ارزیابی تعادل تغذیه‌ای در مزارع چغندرقند استان کرمانشاه با روش‌های انحراف از درصد بهینه (DOP) و تشخیص چندگانه (CND)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار پژوهشی بخش تحقیقات خاک و آب، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان کرمانشاه، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 دانشیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

3 عضو هیات علمی بخش تحقیقات خاک و آب، مرکز تحقیقات، آموزش کشاورزی و منابع طبیعی استان کرمانشاه

4 کارشناس ارشد خاک‌شناسی سازمان جهاد کشاورزی استان کرمانشاه.

10.22092/ijsr.2023.359848.678

چکیده

تجزیه گیاه، روش مفیدی است که با استفاده از روش­های انحراف از درصد بهینه (DOP) و تشخیص چندگانه عناصر غذایی (CND)، به‌منظور ارزیابی و بهینه‌سازی عناصر غذایی چغندرقند بکار می­رود. لذا، به‌منظور ارزیابی وضعیت تغذیه­ای چغندرقند در استان کرمانشاه این تحقیق به مدت دو فصل زراعی (99-1397) اجرا شد. در هر سال حداقل تعداد 30 مزرعه که دارای دامنه متفاوتی از خصوصیات خاک بودند انتخاب گردید. در این پژوهش، گروه "عملکرد زیاد" در مزارع چغندرقند، با استفاده از روش انحراف از درصد بهینه (DOP) و تشخیص چندگانه عناصر غذایی (CND)، از طریق ریاضی، آماری و کاربرد تابع تجمعی متمایز گردید. همچنین، با استفاده از نتایج تجزیه گیاه، محدوده "کفایت" و "بحرانی" عناصر غذایی برای روش تشخیص چندگانه عناصر غذایی (CND) برآورد گردید. نتایج نشان داد که در مقایسه با حد بحرانی، خاک 85%، 10%، 97/5%، 67%، 93%، 100% و 5% مزارع به ترتیب دارای کمبود فسفر، پتاسیم، آهن، منگنز، روی، بور و مس بود. میانگین عملکرد مزارع حدود 67/6 تن در هکتار بود. بر اساس عملکرد، مزارع چغندرقند منتخب به دو گروه با عملکرد بالا و پایین دسته‌بندی شد. نتایج محاسبه شاخص­های انحراف از درصد بهینه و تشخیص چندگانه نشان داد که در بین عناصر غذایی پرمصرف، منیزیم، فسفر و نیتروژن و در بین عناصر کم‌مصرف، آهن، منگنز و روی بیشترین کمبود را داشت. البته در بین دو روش مزبور اختلاف جزئی از نظر نیتروژن، منگنز و آهن در بین عناصر وجود داشت. بین شاخص تعادل تغذیه­ای " انحراف از درصد بهینه" و عملکرد، همبستگی 0.48 وجود داشت که در سطح احتمال یک درصد معنی­دار بود. نتایج به‌دست‌آمده از این پژوهش می­تواند به‌منظور افزایش عملکرد و بهبود کیفیت محصول چغندرقند به شکل کاربردی مورد استفاده قرار گیرد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Nutritional Balance in Sugar Beet Fields through Deviation from Optimum Percentage (DOP) and Compositional Nutrient Diagnosis (CND) Methods

نویسندگان [English]

  • jalal ghaderi 1
  • Mohammad Mehdi Tehrani 2
  • Fardin Hamedi 3
  • Khalil Heydari 4
1 Assistance professor of Soil and Water Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AEEO, Iran
2 Assistance professor of Soil and Water Research Institute, AEEO, Iran.
3 Scientific Staff of Soil and Water Research Department, Kermanshah Agricultural and Natural Resources Research and Education Center, AEEO, Iran.
4 MSc of soil pedology, Agricultural Jihad Organization of Kermanshah Province.
چکیده [English]

Tissue analysis is a useful tool for evaluation and optimizing nutrients for sugar beet using Deviation from Optimum Percentage (DOP) and Compositional Nutrient Diagnosis (CND) methods. In order to evaluate the nutritional status of sugar beet farms in Kermanshah Province, this project was conducted in two cropping seasons (2018-21). In each year, 30 different farms with different ranges of soil properties were selected in each region. The project database for the first and second seasons was completed and analyzed and DOP and CND indices were calculated for each nutrient element. Compared with the critical nutrient concentration in Kermanshah Province, the results showed that 85%, 10%, 97.5%, 67%, 93%, 100%, and 5% of farms were deficient in phosphorus, potassium, iron, manganese, zinc, boron and copper, respectively. The average sugar beet yield in this region was about 67.6 t/ha. Selected sugar beet farms were divided into two groups of high and low yields. The results of CND and DOP indices in the Kermanshah province showed that Mg, P, N and K deficiencies were more prevalent among macro-elements and Fe, Mn and Zn deficiencies were observed among micro-elements. However, there was a difference between the two methods in terms of the content of N, Mn, and Fe among the deficient elements. There was a significant correlation (0.48) between nutritional balance index and yield at 1% probability level. The results obtained in this study can be used to increase the yield and improve the quality of sugar beet in each of the regions.

کلیدواژه‌ها [English]

  • Tissue analysis
  • Evaluation and optimization of nutrients
  • Critical nutrients concentration
  1. بصیرت، م.، حقیقت­نیا، ح. ، موسوی، س. م. 1397. ارزیابی و تعیین وضعیت تغذیه­ای باغات پرتقال رقم والنسیا در جنوب استان فارس. نشریه آب‌وخاک (علوم و صنایع کشاورزی)، جلد 32، شماره1، ص 143 تا 154.
  2. بی‌نام. 1399. آمارنامه کشاورزی سال زراعی، 98-137. وزارت جهاد کشاورزی . مرکز فناوری اطلاعات و ارتباطات. 97 ص.
  3. دردی پور، ا.، امامی، پ.، دریاشناس، ع. 1391. ارزیابی تعادل تغذیه­ای در باغ­های هلو با روش انحراف از درصد بهینه. مجله مدیریت خاک و تولید پایدار، دوره 2، شماره 1، ص 79 تا 94.
  4. دریاشناس، ع.، ثقفی، ک. 1390. تشخیص چندگانه عناصر غذایی (CND) برای چغندرقند. نشریه علمی پژوهش­های خاک، جلد 25، شماره 1، ص 1 تا 12.
  5. شهبازی، ک.، بشارتی، ح. 1392. بررسی اجمالی وضعیت حاصلخیزی خاک‌های کشاورزی ایران. نشریه مدیریت اراضی. جلد 1، شماره 1، ص 15-1.
  6. لکزیان، ا.، فیضی اصل، ع.،.تهرانی فر، ا.، حلاج نیا، ح.، رحمانی، پ.، پاکدل، س .، محسنی، ه.، طالبی، ا.1391.تعیین نرم‌های دریس و ارزیابی تغذیه‌ای درختان چنار platanus Sp.)) در مشهد. نشریه علوم باغبانی (علوم و صنایع غذایی) ، جلد 26، شماره 1، ص 44-35.
  7. ملکوتی ، م. ج.، ریاضی همدانی، ع. ح. 1370. کودها و حاصلخیزی خاک ( نویسنده ، تسیدل و تلسون). انتشارات دانشگاه تهران، 598 ص.
  8. Bertrand, I., HollowayC, R. E., Armstrong, R. D., and McLaughlin, M. J. Chemical characteristics of phosphorus in alkaline soils from southern Australia. Australian Journal of Soil Research. 41: 61–76.
  9. Bingham, F.T. 1982. Boron. In: Page, A.L., Ed., Methods of soil Analysis Part-2 Chemical and Mineralogical Properties, American Society of Agronomy, Madison, 431-448.
  10. Black, C. A., Evans, D. D., and Dinauer, R. C. 1965. Methods of Soil Analysis. Am. Soc. Agron. Madison, WI. Vol. 9, Pp. 653-708.
  11. Bouyoucos, G. J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal. l54(5): 464-465.
  12. Brady, N. C., and Weil, R. R. 2002. The Nature and Properties of Soils. 14nd Prentice Hall, Upper Saddle River, New Jersey.
  13. Brakke, F.H., and Salih, N. 2002. Reliability of foliar analyses of Norway Spruce stands in a Nordic Gradient. Silva Fennica, 36: 489-504.
  14. Buresh, R. J., Austin, E. R., and Craswell, E. T. 1982. Analytical methods in N-15 research. Fertilizer Research. 3: 37-62.
  15. Fageria, N.K., Baligar, V.C., and Jones, C. A. 1991. Growth and mineral nutrition of field crop. Marcel Dekker, New York.
  16. Fox R. L., Alson, R. , and Rhoades H. F. 1964. Evaluating the sulfur status of soils by plants and soil tests. Soil Science Society of America Journa. Proc. 21: 287-292.
  17. Jimenez, S.J., Pinochet, Y., Gogorcena, J.A., and Betran, M.A.M. 2007. Influence ofdifferent vigour cherry rootstocks on leaves and shoots mineral composition. Science of Horticulture. 112: 73-79.
  18. Jones, J. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, LLC. USA.
  19. Khiari, L., Parent., L.E., and Tremblay, N. 2001a. Critical compositional nutrient indexes for sweet corn at early growth stage. Agronomy Journal. 93: 809-814.
  20. Khiari, L., Parent, L.E., and Tremblay, N. 2001b. The Phosphorus compositional nutrient diagnosis range for potato. Agronomy Journal. 93: 815-819.
  21. Khiari, L., Parent, L.E., and Tremblay, N. 2001c. Selecting the high-yield subpopulation for diagnosing nutrient imbalance in crops. Agronomy Journal. 93: 802-808.
  22. Knudsen, D., Peterson, G.A., and P.F. Pratt. 1982. Lithium, sodium, and potassium. Pp. 225-246. In Page A.L., R.H. Miller, and D.R. Keeney (eds). Method of Soil Analysis. Part2. Chemical and Microbiological Properties. Soil Science Society of America. Book Ser. 5. Madison, WI, USA.
  23. Hanway, J. J., and Heidel, H. 1952. Soil analysis methods as used in Iowa state college soil testing laboratory. Iowa Agric. 57:1-13.
  24. Lindsay, W.L., and Norvell, W.A. 1978. Development of a DTPA test for zinc, iron, manganese and copper. Soil Science Society of America Journal. 42: 421-428.
  25. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd Academic Press. San Diago, USA, 880p.
  26. Mclean, E.O. 1982. Soil pH and lime requirement. Pp. 199-224. In Page A.L., R.H. Miller, and D.R. Keeney (eds). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. Soil Sci. Soc. Am. Book Ser. 5. Madison, WI, USA.
  27. Montanes, L., Heras, L., Abadia, J., and Sanz, M.1993. Plant analysis interpretation based on a new index: deviation from optimum percentage. Journal of Plant Nutrition. 16: 1289-1308.
  28. Olsen, S.R., Cole, C.V., Watanabe, F.S., and Dean, L.A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA Circ. 939 US Gover. Prin. Office, Washington DC.
  29. Page, A. L., Miller, R. H., and Keeney, D. R. 1982. Chemical and microbiological properties. In Methods of soil analysis, Part 2, No. 9, Second ed., 443–44. Madison, WI: American Society of Agronomy.
  30. Parent, L.E., and Dafir, M. 1992. A theoretical concept of compositional nutrient diagnosis. American Society for Horticultural Science. 117: 239-242.
  31. Parent, L.E., and Khiari, L. 2003. The compositional nutrient diagnosis of onions. xxxvi international horticultural congress: Toward ecologically sound fertilization strategies for field vegetable production. http://www.actahort.org.
  32. Parent, L.E., Cambouris, A.N., and Muhawenimana, A. 1994. Multivariate diagnosis of nutrient imbalance in potato crops. Soil Science Society of America Journal. 58: 1432-1438.
  33. Pereira, B.F., Stoffella, P.J., and Melfi, A.J. 2011. Reclaimed wastewater: Effects on citrus nutrition. Journal of Agricultural and Water Management. 98: 1828-1833.
  34. Quin, B. F., and Wood, P. H. 1976. Rapid manual determination of sulfur and phosphorous in plant material. Communications in Soil Science and Plant Analysis. 7(4): 415-425.
  35. Ryan, J.R., Stefan, G., and Rashid, A. 2001. Soil and Plant Analysis Laboratory Manual (2nd ed). ICARDA. Aleppo, Syria, PP.172.
  36. Salih, N., and Andderson, F. 1999. Nutritional status of a Norway spruce stand in SW Sweden in response to compensatory fertilization. Plant and Soil. 209: 85-100.
  37. Sharma J., Shikhamany, S.D., Singh, R. K., and Raghupathi, H.B. 2005. Diagnosis of nutrient imbalance in Thompson seedless grape grafted on Dog Ridge rootstock by DRIS common. Soil Science and Plant Analysis. 36: 2823-2838.
  38. Walkley, A., and Black, I. A. 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37: 1. 29-38.
  39. Walworth, J.L., and Sumner, M.E. 1987. The Diagnosis and recommendation integrated system (DRIS). Adv. Soil Sci. 6:149-188.
  40. Westerman, R. L. 1990. Soil Testing and Plant Analysis. 3rd Soil Sci Soc. Am, Inc. Madison, Wisconsin, U. S. A.