بررسی اجمالی وضعیت عناصر پرمصرف، شوری و کربن آلی در خاک برخی اراضی شالیزاری استان گیلان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مربی پژوهش موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت

2 دانشیار موسسه تحقیقات خاک و آب، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج

3 دانشیار موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت

4 دانشجوی‌دکتری موسسه‌تحقیقات‌برنج‌کشور، سازمان‌تحقیقات، آموزش‌و‌ترویج‌کشاورزی، رشت

5 دانشجوی دکتری موسسه تحقیقات برنج کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت

6 دانشجوی ‌دکتری موسسه‌ تحقیقات ‌برنج ‌کشور، سازمان‌ تحقیقات، آموزش‌ و‌ترویج‌ کشاورزی، رشت

چکیده

عدم آگاهی از تغییرات عناصر موجود در خاک مزارع مختلف و توصیه‌های یکسان کودی سبب می‌شود که برخی خاک‌ها بیشتر و برخی‌ کمتر از حد نیاز خود کود دریافت کنند. این پژوهش با هدف بررسی تغییرات مکانی و وضعیت عناصر پر‌مصرف شامل نیتروژن، فسفر و‌ پتاسیم و برخی ویژگی‌های مهم خاک از جمله کربن‌آلی، قابلیت هدایت الکتریکی وpH  در برخی شالیزارهای گیلان اجرا شد. به این منظور، در سال زراعی 1398 و قبل از آماده­سازی زمین برای کشت، از عمق صفر تا 30 سانتی‌متری خاک مزارع شالیزاری مناطق ماسال‌، رودبار، مقداد (خشکبیجار، لشت‌نشا، خمام) و سیاهکل در استان گیلان با فواصل حداقل 500 متر نمونه‌برداری بصورت مرکب انجام شد. با استفاده از نتایج تجزیه خاک، وضعیت ویژگی­های مورد نظر بر پایه آمار توصیفی مورد ارزیابی قرار گرفت. سپس، محدوده مناطق بیش‌بود و ‌کمبود عناصر غذایی در اراضی‌ شالیزاری تعیین شد. بررسی داده‌ها نشان داد که در مناطق مورد بررسی عنصر فسفر یکی از محدودیت‌های عمده بود به طوری که بیشتر از 80% خاک‌های نمونه‌برداری شده منطقه سیاهکل، 72% خاک‌های منطقه رودبار، 65% خاک‌های منطقه ماسال و54% خاک‌های منطقه مقداد دچار کمبود فسفر قابل استفاده بودند. در مناطق یاد شده، پتاسیم شرایط بهتری نسبت به فسفر داشت به طوری که درمنطقه سیاهکل 3/51% خاک‌ها، در منطقه رودبار 31٪، در منطقه ماسال 66٪ و در منطقه مقداد 26٪ خاک‌های نمونه‌برداری شده دارای پتاسیم قابل استفاده کمتر از سطح بحرانی بود. همچنین در منطقه مقداد 4/19٪ خاک‌ها، در ساهکل 6/36٪ ، در ماسال 4/48٪ و در رودبار100٪ خاک‌های مزارع نمونه‌برداری شده دارای نیتروژن کمتر از سطح بحرانی بود. بررسی وضعیت خاک‌های شالیزاری نقاط نمونه‌برداری حاکی از آن بود که توزیع مکانی عناصر غذایی پرمصرف یکسان نبود. بر این اساس، توصیه‌های کودی یکسان برای اراضی مختلف شالیزاری مناسب نبوده و توزیع کود در شهرستان‌‌های مختلف استان باید با توجه به وضعیت خاک هر منطقه انجام شود

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Overview of the Status of Macro Elements, Salinity, and Organic Carbon in Some Paddy Lands of Gilan Province

نویسندگان [English]

  • HASSAN SHOKRI VAHED 1
  • nasar davatgar 2
  • masoud kavoosi 3
  • Shahriar babazadeh jafari 4
  • Leila Rezaee 5
  • maryam shakouri 6
1 Scientific Board Member, Rice Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
2 Assist. Prof., Soil and Water Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
3 Assoc. Prof., Rice Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
4 PhD. candidate, Rice Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
5 PhD. candidate, Rice Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
6 PhD. candidate, Rice Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Rasht, Iran
چکیده [English]

Lack of awareness of changes in soil content of nutrient elements in different farms and applying the same fertilizer recommendations cause some soils to receive more, and some less, than the required fertilizer. The aim of this study was to investigate the spatial changes and status of macro elements including N, P and K and some important soil properties such as OC, EC, and pH in some paddy fields of Gilan Province. To this end, in 2018, before preparing the land for cultivation, composite soil sampling was performed from 0 to 30 cm depth of paddy fields in Masal, Rudbar, Meqdad (Khoshkbijar, Lashtnashah, Khomam) and Siahkal areas, with spacings of at least 500 m. Using the results of soil analysis, status of the desired characteristics was evaluated based on descriptive statistics. Then, excess and deficiency of nutrients in paddy lands were determined. Data analysis showed that  available phosphorus was one of the major limitations in the study areas, such that more than 80% of the sampled soils in Siahkal, 72% in Rudbar, 65% in Masal, and 54% in Meqdad were deficient in P. Potassium had better conditions than P, such that 51.3% of the soils in Siahkal area, 31% in Rudbar, 66% in Masal, and 26%in Migdad had available K lower than the critical level. Also, 19.4% of soils in Meqdad region,  36.6% in Siahkal, 48.4% in Masal, and 100% in Rudbar had total N lower than the critical level (0.2 %). Examination of the condition of paddy soils at the sampling points showed that the spatial distribution of nutrients was not the same. The findings of this study showed that using the same fertilizer recommendation is not suitable for different paddy lands; and distribution of fertilizer in different areas of the province should be done according to the soil analysis of each region.

کلیدواژه‌ها [English]

  • Descriptive statistics
  • Paddy fields
  • Rice
  • Spatial variability
  • Macro nutrients
  1. بابازاده جعفری، ش.، فیضیان، م.، دوات گر، ن. 1400. درجه بندی نمایه کیفیت حاصلخیزی خاک بر مبنای عملکرد برنج در شالیزارهای بخش کوچصفهان استان گیلان. نشریه پژوهش های خاک. جلد 35 شماره3
  2. دوات گر، ن.، شکوری کتیگری، م.، رضائی. ل.، دلسوز خاکی، ب.، شکری واحد، ح.، و کاووسی، م. 1398 . تغییرات مکانی وضعیت حاصلخیزی خاک شالیزارهای بخش جنوبی دشت فومنات. نشریه پژوهش های خاک. جلد 33 شماره2: 141-155
  3. دوات گر، ن.، کاووسی، م. یزدانی، م.ر.، رضایی، م. شکوری کتیگری، م. رضائی، ل. رودپیما، م. دریغ گفتار، ف. پیکان، م. احمدزاده، س. کشتکار، ف. و عطار، ا . 1394. شناسایی و ارزیابی منابع آلاینده و کیفیت آب های فاز اول دشت مرکزی گیلان. گزارش نهایی پروژه GIS سطحی کشاورزی دشت گیلان با استفاده از سامانه تحقیقاتی. موسسه تحقیقات برنج کشور
  4. رضایی، ع. 1374. مفاهیم آمار و احتمالات. نشر مشهد،‌476 صفحه.
  5. شکوری کتیگری، م.، شعبانپور، م.، دوات گر، ن.، وظیفه‌دوست، م. 1399. ارزیابی کیفیت خاک در خاک‌های شالیزاری با عملکردهای متفاوت(مطالعه موردی: کوچصفهان استان گیلان). تحقیقات آب و خاک دوره 51 شماره 12
  6. فلاح، ولی محمد.1378. پلات شاهد، توصیه علمی کود نیتروژنه بدون انجام آزمون خاک (نشریه ترویجی) شماره ثبت 215/79-27/4/79 ، موسسه تحقیقات برنج کشور- معاونت مازندران
  7. Adriana, L.D. 2007. On the use of soil hydraulic conductivity functions in the field. Soil Science. 93: 162-170
  8. Ahn, N. T., Shin, J. C. and Lee, B. W. 2004. Analysis of rice grain yield and soil chemical properties. Proceeding for the 12th International Crop Science Congress, September 26, Brisbane, Australia.
  9. Ahn, N. T., Shin, J. C. and Lee, B. W. 2005. Analysis of within-field spatial variation of rice growth and yield in relation to soil properties. Korean Journal Crop Science, 50(4):221-237.
  10. Asch, F. and M.C.S. Wopereis, 2001. Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. Field Crop Research., 70: 127-137
  11. Balasundram, S. K., M. H. A. Husni and O.H. Ahmad. 2008. Application of geostatistics tools to quantify spatial variability of selected soil chemical properties from a cultivated tropical peat. Journal of agronomy. 7(1): 82-87.
  12. Bremner, J.M.1996. Nitrogen total. P. 1058-1121. In D.W. Nelson, et al.(Eds) Methods of soil analysis. Part 3. Chemical methods. SSSA, Madison. WI
  13. Brye, K. R., N. A. Slaton, M. C. Stavin, R. J. Norman, and D. M. Miller. 2003. Short- torm effects of land leveling on soil physical properties and microbial biomass. Soil Science Society of American 67: 1405- 1417.
  14. Dahiya, I. S., J. Richter, and R. S. Malik. 1984. Soil spatial variability: A review. Intern. Tropical Agriculture., Vol. 11, no. 1, PP: 1-102.
  15. D Li, T Nanseki, Chomei, Y and Fukuhara, Y .2018. Impact of soil chemical properties on  rice yield in 116 paddy fields sampled from a large-scale farm in Kinki region, Japan. 4th International Conference on Agricultural and Biological Sciences., Hangzhou, China.
  16. Delsouz Khaki, B., Honarjoo, N., Davatgar, N., Jalalian, A., Torabi Golsefidi, H., 2017. Assessment of two soil fertility indices to evaluate paddy fields for rice cultivation. Sustainability 9: 1–1. 
  17. Franzen, D.W., Kitchen, N.R., 1999. Developing management zones to target nitrogen applications. SSMG-5. In: Site-specific Management Guidelines Series. Potash Phosphate Institute, http://www.ppi-far.org/ssmg
  18. Gotway, C. A., Ferguson, R. B., Hergert, G. W., and Peterson, T. A., 1996. Comparison of kriging and inverse-distance methods for mapping soil parameters. American  Journal of Soil Science. 60, 1237–1247.
  19. Helmke, P.A., and D.L. Sparks. 1996.Lithium, Potassium, Rubidium and Cesium. P. 551-574. In D.W. Nelson, et al.(Eds) Methods of soil analysis. Part 3. Chemical methods. SSSA, Madison. WI
  20. Karimi Amir Kiasar, M.  Kavossi, M. Shokri vahed, H., 2013.Phosphorus Critical Concentration in Paddy Soils of Guilan Province. Water and Soil Science. University of Tabriz.
  21. Kavossi, M. Kalbasi, M., 2000. Comparison of soil potassium extracting methods to determine suitable extractants for sepeedrood rice variety in some Guilan rice paddy fields.  Journal of Science and Technology of Agriculture and Natural Resources.; 3 (4) :57-70
  22. Kuo, S.1996. Phosphorous. P. 869-919. In D.W. Nelson, et al.(Eds) Methods of soil analysis. Part 3. Chemical methods. SSSA, Madison. WI
  23. Nelson, D.W. and L.E. Sommers. 1996. Total carbon, organic carbon, and organic matter. P.961-1010. In D.W. Nelson, et al.(Eds) Methods of soil analysis. Part 3. Chemical methods. SSSA, Madison. WI
  24. Neue, H. U., Mamaril, C.P. 1985. Zinc, sulfur and other micronutrients in wetland soils. In. Wetland soils: characterization, classification and utilization. Manila, Philippines: International Rice Research Institute. P 307-319.
  25. Pan XB. 1998. Development and application of Netherlandish crop model. Word Agriculture 223: 17-19.
  26. Robert, P. C. 1999. Status and research needs. In precision Agriculture 99: proc. 2nd European conference on precision Agriculture, 12- 15. J. V. Stafford, ed. Oxford, U. K. : BIOS scientific publishers.
  27. Sun, B., Sh. Zhou, and Q. Zhao. 2003. Evaluationof spatial and temporal changes of soil quality based on geostatistical analysis in the hill region of suberopical china. Geoderma, 115: 85-99.
  28. Tsegaye, T., Hill, R.L., 1998. Intensive tillage effects on spatial variability of soil test, plant growth, and nutrient uptake measurement. Soil Science. 163, 155– 165.
  29. Wilding, L.P., and L.R. 1983. Spatial variability and pedology. In: L.P. Wilding, N.E. Smeckand and G.F. Hall (eds.), Pedogenesis and Soil Taxonomy. I. Concepts and Interactions. Elsvier Science Pub., pp. 83-116.
  30. Xiong, W., I. Holman, D. Conway, E. Lin and Y. Li. 2008. A crop model cross calibration for use in region climate impacts studies. Ecological Modeling. 213: 365-380.
  31. Young, J., L. Wenju, W. Wen and Z. Yuge. 2005. Spatial heterogeneity of DTPA-extractable zinc in Cultivated soils indused by city pollution and land use. Journal of Science in China Ser. C life Sciences. 15:75-80.